CVaR
as linear programming model

Juraj Pekár, Ivan Brezina jr., Zuzana Čičková
Conditional value at risk (CVaR)

1. Conditional value at risk (CVaR)

2. CVaR as linear programming model
Conditional value at risk (CVaR)

- Value at risk (VaR) a standard tool of risk management in the financial sector
- An alternative measure of risk—conditional VaR
- Shortcomings of VaR:
 I. VaR measures only percentiles of profit and loss, and thus disregards the loss beyond the VaR,
 II. VaR is not a coherent risk measure because it is not sub-additive
CVaR as linear programming model

Model of portfolio selection based on CVaR:

\[CVaR_\alpha(X) = \min \left\{ Var_\alpha + \frac{1}{\alpha} E \left[(E_p - X - Var_\alpha)^+ \right] \right\} \]

where \(Var_\alpha \) – Value at risk, \(E_p \) – target return, formula \((E_p - X - Var)^+\) is a positive part of difference \(E_p - X - Var\).
CVaR as linear programming model

Variable X – expectant return of portfolio $w^T r_k$

Objective function:

$$\min \left\{ \text{VaR}_\alpha + \frac{1}{\alpha t} \sum_{k=1}^{z} [E_p - w^T r_k - \text{VaR}_\alpha]^+] \right\}$$
To avoid the nonlinear formulation it is necessary to replace the element

\[
[E_p - w^T r_k - \text{VaR}_\alpha]^+
\]

with the variable \(z = (z_1, z_2, ..., z_t) \), where \(z_k \geq 0 \) for \(k=1,2,\ldots,t \).
CVaR as linear programming model

\[
\min \left\{ \text{VaR}_\alpha + \frac{1}{\alpha t} \sum_{k=1}^{z} z_k \right\}
\]

\[
z_k - E_p + w^T r_k + \text{VaR}_\alpha \geq 0, \quad k = \{1, 2, \ldots, t\},
\]

\[
w^T E(r_n) \geq E_p
\]

\[
w^T e = 1
\]

\[
z \geq 0,
\]

\(E(r_n)\) – vector of expected returns of assets